Acetylcholine release at neuromuscular junctions of adult tottering mice is controlled by N-(cav2.2) and R-type (cav2.3) but not L-type (cav1.2) Ca2+ channels.
نویسندگان
چکیده
The mutation in the alpha(1A) subunit gene of the P/Q-type (Ca(v)2.1) Ca(2+) channel present in tottering (tg) mice causes ataxia and motor seizures that resemble absence epilepsy in humans. P/Q-type Ca(2+)channels are primarily involved in acetylcholine (ACh) release at mammalian neuromuscular junctions. Unmasking of L-type (Ca(v)1.1-1.2) Ca(2+) channels occurs in cerebellar Purkinje cells of tg mice. However, whether L-type Ca(2+) channels are also up-regulated at neuromuscular junctions of tg mice is unknown. We characterized thoroughly the pharmacological sensitivity of the Ca(2+) channels, which control ACh release at adult tg neuromuscular junctions. Block of N- and R-type (Ca(v)2.2-2.3), but not L-type Ca(2+) channels, significantly reduced quantal content of end-plate potentials in tg preparations. Neither resting nor KCl-evoked miniature end-plate potential frequency differed significantly between tg and wild type (WT). Immunolabeling of Ca(2+) channel subunits alpha(1A), alpha(1B), alpha(1C), and alpha(1E) revealed an apparent increase of alpha(1B), and alpha(1E) staining, at tg but not WT neuromuscular junctions. This presumably compensates for the deficit of P/Q-type Ca(2+)channels, which localized presynaptically at WT neuromuscular junctions. No alpha(1C) subunits juxtaposed with pre- or postsynaptic markers at either WT or tg neuromuscular junctions. Thus, in adult tg mice, immunocytochemical and electrophysiological data indicate that N- and R-type channels both assume control of ACh release at motor nerve terminals. Recruitment of alternate subtypes of Ca(2+) channels to control transmitter release seems to represent a commonly occurring method of neuronal plasticity. However, it is unclear which conditions underlie recruitment of Ca(v)2 as opposed to Ca(v)1-type Ca(2+) channels.
منابع مشابه
Compensatory contribution of Cav2.3 channels to acetylcholine release at the neuromuscular junction of tottering mice.
Tottering (Tg) mice carry the mutation P601L in their Cacna1a encoded Cav2.1 channels. Transmitter release at the wild-type neuromuscular junction (NMJ) is almost exclusively mediated by Cav2.1 channels, and we used this model synapse to study synaptic consequences of the Tg mutation. With electrophysiology, and using subtype-specific Cav2 channel-blocking toxins, we assessed a possible compens...
متن کاملIdentification of CaV channel types expressed in muscle afferent neurons.
Cardiovascular adjustments to exercise are partially mediated by group III/IV (small to medium) muscle afferents comprising the exercise pressor reflex (EPR). However, this reflex can be inappropriately activated in disease states (e.g., peripheral vascular disease), leading to increased risk of myocardial infarction. Here we investigate the voltage-dependent calcium (CaV) channels expressed in...
متن کاملAbnormal transmitter release at neuromuscular junctions of mice carrying the tottering alpha(1A) Ca(2+) channel mutation.
Neurotransmitter release at many synapses is regulated by P/Q-type Ca(2+) channels containing the alpha(1A) pore-forming subunit. Mutations in alpha(1A) cause cerebral disorders including familial hemiplegic migraine (FHM) and ataxia in humans. Tottering (tg) alpha(1A) mutant mice display ataxia and epilepsy. It is not known whether alpha(1A) mutations induce impairment of synaptic function, wh...
متن کاملUnified Mechanisms of Ca2+ Regulation across the Ca2+ Channel Family
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels...
متن کاملSpontaneous acetylcholine release in mammalian neuromuscular junctions.
Spontaneous secretion of the neurotransmitter acetylcholine in mammalian neuromuscular synapsis depends on the Ca2+ content of nerve terminals. The Ca2+ electrochemical gradient favors the entry of this cation. We investigated the possible involvement of three voltage-dependent Ca2+ channels (VDCC) (L-, N-, and P/Q-types) on spontaneous transmitter release at the rat neuromuscular junction. Min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 319 3 شماره
صفحات -
تاریخ انتشار 2006